Fabrication and Selective Functionalization of Amine-Reactive Polymer Multilayers on Topographically Patterned Microwell Cell Culture Arrays
详细信息    查看全文
文摘
We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of 3-D polyurethane-based microwell cell culture arrays. 鈥淩eactive鈥?layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4鈥?dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized postfabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine pan class="smallcaps">dpan>-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro. These and other experiments demonstrated that it was possible to functionalize different structural features of these arrays in a spatially resolved manner to create dual-functionalized substrates (e.g., to create arrays having either (i) azlactone-functionalized wells, with regions between the wells functionalized with glucamine or (ii) substrates with spatially resolved regions of two different cationic polymers). In particular, spatial control over glucamine functionalization yielded 3-D substrates that could be used to confine cell attachment and growth to microwells for periods of up to 28 days and support the 3-D culture of arrays of cuboidal cell clusters. These approaches to dual functionalization could prove useful for the long-term culture and maintenance of cell types for which the presentation of specific and chemically well-defined 3-D culture environments is required for control over cell growth, differentiation, and other important behaviors. More generally, our approach provides methods for the straightforward chemical functionalization of otherwise unreactive topographically patterned substrates that could prove to be useful in a range of other fundamental and applied contexts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700