Experimental and Theoretical Insights into the Mechanisms of Sulfate and Sulfamate Ester Hydrolysis and the End Products of Type I Sulfatase Inactivation by Aryl Sulfamates
详细信息    查看全文
  • 作者:Spencer J. Williams ; Emma Denehy ; Elizabeth H. Krenske
  • 刊名:Journal of Organic Chemistry
  • 出版年:2014
  • 出版时间:March 7, 2014
  • 年:2014
  • 卷:79
  • 期:5
  • 页码:1995-2005
  • 全文大小:538K
  • 年卷期:v.79,no.5(March 7, 2014)
  • ISSN:1520-6904
文摘
Type I sulfatases catalyze the hydrolysis of sulfate esters through S鈥揙 bond cleavage and possess a catalytically essential formylglycine (FGly) active-site residue that is post-translationally derived from either cysteine or serine. Type I sulfatases are inactivated by aryl sulfamates in a time-dependent, irreversible, and active-site directed manner consistent with covalent modification of the active site. We report a theoretical (SCS-MP2//B3LYP) and experimental study of the uncatalyzed and enzyme-catalyzed hydrolysis of aryl sulfates and sulfamates. In solution, aryl sulfate monoanions undergo hydrolysis by an SN2 mechanism whereas aryl sulfamate monoanions follow an SN1 pathway with SO2NH as an intermediate; theory traces this difference to the markedly greater stability of SO2NH versus SO3. For Pseudomonas aeruginosa arylsulfatase-catalyzed aryl sulfate hydrolysis, Br酶nsted analysis (log(Vmax/KM) versus leaving group pKa value) reveals 尾LG = 鈭?.86 卤 0.23, consistent with an SN2 at sulfur reaction but substantially smaller than that reported for uncatalyzed hydrolysis (尾LG = 鈭?.81). Common to all proposed mechanisms of sulfatase catalysis is a sulfated FGly intermediate. Theory indicates a 鈮?6 kcal/mol preference for the intermediate to release HSO4鈥?/sup> by an E2 mechanism, rather than alkaline phosphatase-like SN2 substitution by water. An evaluation of the stabilities of various proposed end-products of sulfamate-induced sulfatase inactivation highlights that an imine N-sulfate derived from FGly is the most likely irreversible adduct.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700