An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials
详细信息    查看全文
文摘
The present research focuses on the comparative investigation of the acid鈥揵ase surface properties (the isoelectric point, pHiep and point of zero charge, pHpzc) of one-dimensional TiO2 nanomaterials. Different one-dimensional TiO2 nanomaterials, nanotubes (NTs) and nanowires (NWs) were prepared by an alkaline hydrothermal synthesis procedure. The structural properties of the synthesized TiO2 nanomaterials were investigated with high-resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The NWs and NTs were characterized using Raman and Fourier transform infrared (FT-IR) spectroscopy as well as Brunauer鈥揈mmett鈥揟eller (BET) measurements. Surface properties, i.e. pHiep and pHpzc of NWs and NTs were determined from electrokinetic measurements, potentiometric mass and electrolyte titrations. The relative acidity for the NWs is found to be in the interval 3 < pHiep < 4 in comparison with the NTs, with 4 < pHiep < 6. The observed differences in the relative acidity are correlated with differences in crystal structure of the studied nanomaterials and their resulting morphology. In addition, our results reveal a strong electrolyte effect on the characteristic points, pHiep and pHpzc, especially the higher cation affinity for both TiO2 nanomaterials surfaces that has a significant effect on the pH of the system. Application of the multisite complexation (MUSIC) model yields a satisfactory description of the electrokinetic data and can explain observed salt effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700