Organic Dipole Layers for Ultralow Work Function Electrodes
详细信息    查看全文
文摘
The alignment of the electrode Fermi level with the valence or conduction bands of organic semiconductors is a key parameter controlling the efficiency of organic light-emitting diodes, solar cells, and printed circuits. Here, we introduce a class of organic molecules that form highly robust dipole layers, capable of shifting the work function of noble metals (Au and Ag) down to 3.1 eV, that is, 鈭? eV lower than previously reported self-assembled monolayers. The physics behind the considerable interface dipole is elucidated by means of photoemission spectroscopy and density functional theory calculations, and a polymer diode exclusively based on the surface modification of a single electrode in a symmetric, two-terminal Au/poly(3-hexylthiophene)/Au junction is presented. The diode exhibits the remarkable rectification ratio of 鈭?路103, showing high reproducibility, durability (>3 years), and excellent electrical stability. With this evidence, noble metal electrodes with work function values comparable to that of standard cathode materials used in optoelectronic applications are demonstrated.

Keywords:

molecular dipole; self-assembled monolayer; injection barrier; organic electronics; work function; interface dipole

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700