Effect of Charge Transfer in Magnetic-Plasmonic Au@MOx (M = Mn, Fe) Heterodimers on the Kinetics of Nanocrystal Formation
详细信息    查看全文
文摘
Heteronanoparticles represent a new class of nanomaterials exhibiting multifunctional and collective properties, which could find applications in medical imaging and therapy, catalysis, photovoltaics, and electronics. This present work demonstrates the intrinsic heteroepitaxial linkage in heterodimer nanoparticles to enable interaction of the individual components across their interface. It revealed distinct differences between Au@MnO and Au@Fe3O4 regarding the synthetic procedure and growth kinetics, as well as the properties to be altered by the variation of the electronic structure of the metal oxides. The chemically related metal oxides differ concerning their band gap; while MnO is a Mott-Hubbard insulator with a large band gap, Fe3O4 is a semimetal with thermally activated conductivity. The fluorescence dynamics indicate a prolonged relaxation time (>2 ns) for electrons of the conduction band of the Au nanoparticles after interfacing to Fe3O4. Here, the semiconductor is not depleted and forms an ohmic contact to the Au domain. In contrast, the fluorescence dynamics and ESCA of Au@MnO affirmed the weak interaction with the electrons of the Au domain, where the junction behaves as a Schottky barrier.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700