Preparation and Characterization of Homologous Diiron Dithiolato, Diselenato, and Ditellurato Complexes: [FeFe]-Hydrogenase Models
详细信息    查看全文
文摘
In order to elucidate the influence of the bridging chalcogen atoms in hydrogenase model complexes, diiron dithiolato, diselenolato, and ditellurolato complexes have been prepared and characterized. Treatment of Fe3(CO)12 with 3,3-bis(thiocyanatomethyl)oxetane (1) or a mixture of 2-oxa-6,7-dithiaspiro[3.4]octane (2a) and 2-oxa-6,7,8-trithiaspiro[3.5]nonane (2b) in toluene at reflux afforded the model compound Fe2(μ-S2C5H8O)(CO)6 (3). The analogous diselenolato and ditellurolato complexes, Fe2(μ-Se2C5H8O)(CO)6 (4) and Fe2(μ-Te2C5H8O)(CO)6 (5), were obtained from the reaction of Fe3(CO)12 with 2-oxa-6,7-diselenaspiro[3.4]octane (6) and 2-oxa-6,7-ditelluraspiro[3.4]octane (7), respectively. Compounds 35 were characterized by spectroscopic techniques (NMR, IR, photoelectron spectroscopy), mass spectrometry, single-crystal X-ray analysis, and computational modeling. The electrochemical properties for the new compounds have been studied to assess their ability to catalyze electrochemical reduction of protons to give dihydrogen, and the catalytic rate is found to decrease on going from the sulfur to selenium to tellurium compounds. In the series 35 the reorganization energy on going to the corresponding cation decreased from 3 to 4 to 5. Spectroscopic and computational analysis suggests that the increasing size of the chalcogen atoms from S to Se to Te increases the Fe−Fe distance and decreases the ability of the complex to form the structure with a rotated Fe(CO)3 group that has a bridging carbonyl ligand and a vacant coordination site for protonation. This effect is mirrored on reduction of 35 in that the rotated structure with a bridging carbonyl, which creates a vacant coordination site for protonation, is disfavored on going from the S to Se to Te complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700