Paper-Based Flow Fractionation System Applicable to Preconcentration and Field-Flow Separation
详细信息    查看全文
  • 作者:Seokbin Hong ; Rhokyun Kwak ; Wonjung Kim
  • 刊名:Analytical Chemistry
  • 出版年:2016
  • 出版时间:February 2, 2016
  • 年:2016
  • 卷:88
  • 期:3
  • 页码:1682-1687
  • 全文大小:401K
  • ISSN:1520-6882
文摘
We present a novel paper-based flow fractionation system for preconcentration and field-flow separation. In this passive fluidic device, a straight channel is divided into multiple daughter channels, each of which is connected with an expanded region. The hydrodynamic resistance of the straight channel is predominant compared with those of expanded regions, so we can create steady flows through the straight and daughter channels. While the expanded regions absorb a great amount of water via capillarity, the steady flow continues for 10 min without external pumping devices. By controlling the relative hydrodynamic resistances of the daughter channels, we successfully divide the flow with flow rate ratios of up to 30. Combining this bifurcation system with ion concentration polarization (ICP), we develop a continuous-flow preconcentrator on a paper platform, which can preconcentrate a fluorescent dye up to 33-fold. In addition, we construct a field-flow separation system to divide two different dyes depending on their electric polarities. Our flow fractionation systems on a paper-based platform would make a breakthrough for point-of-care diagnostics with specific functions including preconcentration and separation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700