Reversible G Protein βγ9 Distribution-Based Assay Reveals Molecular Underpinnings in Subcellular, Single-Cell, and Multicellular GPCR and G Protein Activity
详细信息    查看全文
文摘
Current assays to measure the activation of G protein coupled receptors (GPCRs) and G proteins are time-consuming, indirect, and expensive. Therefore, an efficient method which directly measures the ability of a ligand to govern GPCR-G protein interactions can help to understand the molecular underpinnings of the associated signaling. A live cell imaging-based approach is presented here to directly measure ligand-induced GPCR and G protein activity in real time. The number of active GPCRs governs G protein heterotrimer (αβγ) dissociation, thereby controlling the concentration of free βγ subunits. The described γ9 assay measures the GPCR activation-induced extent of the reversible βγ9 subunit exchange between the plasma membrane (PM) and internal membranes (IMs). Confocal microscopy-based γ9 assay quantitatively determines the concentration dependency of ligands on GPCR activation. Demonstrating the high-throughput screening (HTS) adaptability, the γ9 assay performed using an imaging plate reader measures the ligand-induced GPCR activation. This suggests that the γ9 assay can be employed to screen libraries of compounds for their ability to activate GPCRs. Together with subcellular optogenetics, the spatiotemporal sensitivity of the γ9 assay permits experimental determination of the limits of spatially restricted activation of GPCRs and G proteins in subcellular regions of single cells. This assay works effectively for GPCRs coupled to αi/o and αs heterotrimers, including light-sensitive GPCRs. In addition, computational modeling of experimental data from the assay is used to decipher intricate molecular details of the GPCR-G protein activation process. Overall, the γ9 assay provides a robust strategy for quantitative as well as qualitative determination of GPCR and G protein function on a single-cell, multicell, and subcellular level. This assay not only provides information about the inner workings of the signaling pathway, but it also strengthens GPCR deorphanization as well as drug discovery efforts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700