Pathway Biomarker Profiling of Localized and Metastatic Human Prostate Cancer Reveal Metastatic and Prognostic Signatures
详细信息    查看全文
文摘
Reverse phase protein microarray technology was used to study key signaling pathways thought to be involved in the progression of benign epithelium to the lethal phenotype of prostate cancer. Specimens of androgen-stimulated localized prostate cancer (N = 21) and androgen-deprivation therapy-recurrent local (N = 4) or metastatic (N = 11) prostate cancer were laser capture microdissected prior to analysis. The results showed significant increases in protein expression levels in malignant epithelial cells and patient-matched stromal tissue, which included higher levels of the apoptotic proteins Bax and Smac/Diablo and increased phosphorylation of Bcl2 (S70). The mitochondrial protein Smac/Diablo and the transcription regulatory protein STAT3 (Y705) correlated with Gleason sum and differed statistically in high Gleason grade (8−10) prostate cancers. Distinct metastasis-specific pathways were activated by caspase cleavage activation, ErbB2 phosphorylation, Bax total protein and Bcl-2 phosphorylation while phosphorylation of all three members of the MAPK family, ERK, p38, and SAP/JNK, were reduced significantly in metastatic lesions compared to primary cancers. This study, the most comprehensive pathway analysis ever performed for human prostate cancer, presents evidence of specific pathway biomarkers that may be useful for assessment of prognosis and stratification for therapy if validated in larger clinical study sets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700