Ice Shear Fracture on Nanowires with Different Wetting States
详细信息    查看全文
文摘
Understanding the function of nanoscale structure morphology in ice adhesion properties is important in deicing applications. The correlation between ice adhesion and nanowire morphology as well as the corresponding ice shear fracture mechanism are presented for the first time. Ice adhesion on nanowires was measured using a tangential ice-detaching instrument that was developed in-house. Stress analysis was performed using a COMSOL software. Nanowire surface shifted from Wenzel to Cassie transition and Cassie wetting states when the nanowire length was increased. Tangential ice-detaching forces were greater on the hydrophilic surface than those on the hydrophobic surface. Ice鈥搃ce internal shear fracture occurred on the ice and force probe contact area at the Wenzel state or on the ice and nanowire contact area at Cassie transition and Cassie state. Different lengths of nanowires caused different wetting states; thus, different fracture areas were formed, which resulted in different tangential ice-detaching forces. This paper presents a new way of tailoring surface ice adhesion via rational design of nanowire morphology with different wetting states.

Keywords:

ice adhesion; nanowire; shear fracture; morphology; wetting state; stress analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700