Segregation Structures and Miscellaneous Diffusions for Ethanol/Water Mixtures in Graphene-Based Nanoscale Pores
详细信息    查看全文
  • 作者:Mengyao Zhao ; Xiaoning Yang
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2015
  • 出版时间:September 17, 2015
  • 年:2015
  • 卷:119
  • 期:37
  • 页码:21664-21673
  • 全文大小:840K
  • ISSN:1932-7455
文摘
Molecular dynamics simulation was conducted to study ethanol鈥搘ater mixtures and the corresponding pure species, confined within slit-shaped graphene nanopores. Extensive structural and dynamical properties of the confined fluids, including hydrogen-bonding behavior, were investigated. The effects of pore width and mixture composition on the confined behavior were illustrated. It is observed that a layered structure is formed within the confined spaces and the ethanol鈥搘ater mixtures show segregation at larger pores, with ethanol molecules preferentially adsorbing on graphene surfaces. This microphase demixing behavior stems from the competitive effect of the solid鈥揻luid and fluid鈥揻luid interactions. Moreover, miscellaneous diffusion mechanisms have been revealed for the hydrogen-bonding mixtures within the graphene pores. In the mixtures, water and ethanol generally display analogous diffusion mechanism due to ethanol鈥搘ater association, converting from short-time subdiffusion to long-time Fickian diffusion in the larger nanopores. In the smaller pore (7 脜), both ethanol and water show a suppressed single-file diffusion behavior at the initial time and then display subdiffusion or single-file diffusion behavior. The complex diffusion behavior of ethanol鈥搘ater mixtures can be described by the collaborating effects of pore confinement and enhanced interaction in the hydrogen-bonding mixtures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700