Effect of Vesicle-to-Micelle Transition on the Interactions of Phospholipid/Sodium Cholate Mixed Systems with Curcumin in Aqueous Solution
详细信息    查看全文
  • 作者:Sha Zhang ; Xiaoyong Wang
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2016
  • 出版时间:August 4, 2016
  • 年:2016
  • 卷:120
  • 期:30
  • 页码:7392-7400
  • 全文大小:485K
  • 年卷期:0
  • ISSN:1520-5207
文摘
The role of vesicle-to-micelle transition has been investigated in the interactions of phospholipid vesicles, phospholipid/sodium cholate (NaC) mixed vesicles, and phospholipid/NaC mixed micelles with curcumin in aqueous solution. The addition of NaC causes phospholipid vesicles to transit into phospholipid/NaC mixed vesicles and phospholipid/NaC mixed micelles. Turbidity measurement reveals that the presence of curcumin increases the NaC concentration for the solubilization of phospholipid vesicles, which indicates that the bound curcumin tends to suppress the vesicle-to-micelle transition. The pyrene polarity index and curcumin fluorescence anisotropy measurements suggest that phospholipid/NaC mixed micelles have a more compact structure than that of phospholipid vesicles and phospholipid/NaC mixed vesicles. Curcumin associated with phospholipid vesicles, phospholipid/NaC mixed vesicles, and phospholipid/NaC mixed micelles often results in higher intensities of absorption and fluorescence than those of free curcumin. However, phospholipid/NaC mixed vesicles lead to the highest values of absorption and fluorescence intensities, binding constant, and radical-scavenging capacity with curcumin. The different structures in the phospholipid bilayer of phospholipid/NaC mixed vesicles and the hydrophobic part of phospholipid/NaC mixed micelles where curcumin located are discussed to explain the interaction behaviors of phospholipid/NaC mixed systems with curcumin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700