Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics
详细信息    查看全文
文摘
Colloidal quantum dot (CQD) photovoltaics offer a promising approach to harvest the near-IR region of the solar spectrum, where half of the sun鈥檚 power reaching the earth resides. High external quantum efficiencies have been obtained in the visible region in lead chalcogenide CQD photovoltaics. However, the corresponding efficiencies for band gap radiation in the near-infrared lag behind because the thickness of CQD photovoltaic layers from which charge carriers can be extracted is limited by short carrier diffusion lengths. Here, we investigate, using a combination of electrical and optical characterization techniques, ligand passivation strategies aimed at tuning the density and energetic distribution of charge trap states at PbS nanocrystal surfaces. Electrical and optical measurements reveal a more than 7-fold enhancement of the mobility-lifetime product of PbS CQD films treated with 3-mercaptopropionic acid (MPA) in comparison to traditional organic passivation strategies that have been examined in the literature. We show by direct head-to-head comparison that the greater mobility-lifetime products of MPA-treated devices enable markedly greater short-circuit current and higher power conversion efficiency under AM1.5 illumination. Our findings highlight the importance of selecting ligand treatment strategies capable of passivating a diversity of surface states to enable shallower and lower density trap distributions for better transport and more efficient CQD solar cells.

Keywords:

colloidal quantum dot; photovoltaics; mobility-lifetime products; charge trapping; time-resolved infrared spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700