Observation of Pull-In Instability in Graphene Membranes under Interfacial Forces
详细信息    查看全文
文摘
We present a unique experimental configuration that allows us to determine the interfacial forces on nearly parallel plates made from the thinnest possible mechanical structures, single and few layer graphene membranes. Our approach consists of using a pressure difference across a graphene membrane to bring the membrane to within 10鈥?0 nm above a circular post covered with SiOx or Au until a critical point is reached whereby the membrane snaps into adhesive contact with the post. Continuous measurements of the deforming membrane with an AFM coupled with a theoretical model allow us to deduce the magnitude of the interfacial forces between graphene and SiOx and graphene and Au. The nature of the interfacial forces at 10鈥?0 nm separation is consistent with an inverse fourth power distance dependence, implying that the interfacial forces are dominated by van der Waals interactions. Furthermore, the strength of the interactions is found to increase linearly with the number of graphene layers. The experimental approach can be used to measure the strength of the interfacial forces for other atomically thin two-dimensional materials and help guide the development of nanomechanical devices such as switches, resonators, and sensors.

Keywords:

Graphene; interfacial forces; nanoelectromechanical systems; pull-in instability

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700