用户名: 密码: 验证码:
Reductant-Free Synthesis of Silver Nanoparticles-Doped Cellulose Microgels for Catalyzing and Product Separation
详细信息    查看全文
文摘
A novel and straightforward synthetic strategy was developed to prepare silver nanoparticles-doped cellulose microgels (Ag NPs@CMG) nanohybrids at room temperature. Residual alkali (sodium hydroxide/urea) from a cellulose dissolving system was reused and acted as a functional accelerant, which made it possible for Ag+ to be reduced to Ag0 by CMG at room temperature, yielding Ag NPs decorated on CMG. The as-prepared Ag NPs@CMG nanohybrids exhibited excellent catalytic performance in reduction of 4-nitrophenol and organic dyes. Moreover, the Ag NPs@CMG nanohybrids were capable to form a desirable porous membrane for catalyzing and simultaneous product separation. Reactants passing through the membrane could be catalytically transformed to product, which is of great significance for water treatment. As a demonstration, three kinds of organic dye solutions were successfully decolorized by using a Ag NPs@CMG nanohybrids-based membrane. The simplicity, sustainability, and straightforwardness of this approach to prepare a highly efficient catalyst and functional membrane open up new possibilities for large-scale production and application of bioresources/noble metal nanohybrids in various fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700