Positive Role of Surface Defects on Carbon Nanotube Cathodes in Overpotential and Capacity Retention of Rechargeable Lithium鈥揙xygen Batteries
详细信息    查看全文
文摘
Surface defects on carbon nanotube cathodes have been artificially introduced by bombardment with argon plasma. Their roles in the electrochemical performance of rechargeable Li鈥揙2 batteries have been investigated. In batteries with tetraethylene glycol dimethyl ether (TEGDME)- and N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI)-based electrolytes, the defects increase the number of nucleation sites for the growth of Li2O2 particles and reduce the size of the formed particles. This leads to increased discharge capacity and reduced cycle overpotential. However, in the former batteries, the hydrophilic surfaces induced by the defects promote carbonate formation, which imposes a deteriorating effect on the cycle performance of the Li鈥揙2 batteries. In contrast, in the latter case, the defective cathodes promote Li2O2 formation without enhancing formation of carbonates on the cathode surfaces, resulting in extended cycle life. This is most probably attributable to the passivation effect on the functional groups of the cathode surfaces imposed by the ionic liquid. These results indicate that defects on carbon surfaces may have a positive effect on the cycle performance of Li鈥揙2 batteries if they are combined with a helpful electrolyte solvent such as PP13TFSI.

Keywords:

surface defects; argon-plasma bombardment; carbonate species; lithium鈭抩xygen batteries; carbon nanotubes; lithium peroxides

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700