Non-exponential Length Dependence of Conductance in Iodide-Terminated Oligothiophene Single-Molecule Tunneling Junctions
详细信息    查看全文
文摘
An exponential decrease of molecular conductance with length has been observed in most molecular systems reported to date, and has been taken as a signature of non-resonant tunneling as the conduction mechanism. Surprisingly, the conductance of iodide-terminated oligothiophene molecules presented herein does not follow the simple exponential length dependence. The lack of temperature dependence in the conductance indicates that tunneling still dominates the conduction mechanism in the molecules. Transition voltage spectroscopy shows that the tunneling barrier of the oligothiophene decreases with length, but the decrease is insufficient to explain the non-exponential length dependence. X-ray photoelectron spectroscopy, stretching length measurement, and theoretical calculations show that the non-exponential length dependence is due to a transition in the binding geometry of the molecule to the electrodes in the molecular junctions as the length increases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700