High Electron Mobility of Nb-Doped SrTiO3 Films Stemming from Rod-Type Sr Vacancy Clusters
详细信息    查看全文
文摘
Achieving high electron mobility in SrTiO3 films is of significant interest, particularly in relation to technological applications such as oxide semiconductors, field-induced superconductors, and thermoelectric generators. One route to achieving high electron mobility is growth of high quality SrTiO3 films with low defect concentrations. Another approach for mobility enhancement is applying a strain to the crystal. However, the maximum mobilities obtainable by these approaches are limited both by external and internal factors (currently available fabrication techniques, and maximum crystal strain, for example). In this paper, we demonstrate a unique crystal engineering approach to alter the strain in Nb-doped SrTiO3 films based on the deliberate introduction of Sr vacancy clusters. Nb-doped SrTiO3 films produced in this manner are found to exhibit remarkably enhanced electron mobilities (exceeding 53鈥?00 cm2 V鈥? s鈥?). This method of defect engineering is expected to enable tuning and enhancement of electron mobilities not only in SrTiO3 films, but also in thin films and bulk crystals of other perovskite-type materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700