Semiconductor Quantum Dot Sensitized Solar Cells Based on Ferricyanide/Ferrocyanide Redox Electrolyte Reaching an Open Circuit Photovoltage of 0.8 V
详细信息    查看全文
文摘
Semiconductor quantum dot sensitized solar cells (QDSSCs) have rapidly been developed, and their efficiency has recently exceeded 9%. Their performances have mainly been achieved by focusing on improving short circuit photocurrent employing polysulfide electrolytes. However, the increase of open circuit photovoltage (VOC) cannot be expected with QDSSCs based on the polysulfide electrolytes owing to their relatively negative redox potential (around −0.65 V vs Ag/AgCl). Here, we demonstrate enhancement of the open circuit voltage by employing an alternative electrolyte, ferricyanide/ferrocyanide redox couple. The solar cell performance was optimized by investigating the influence of ferricyanide and ferrocyanide concentration on their interfacial charge transfer and transport kinetics. The optimized ferricyanide/ferrocyanide species concentrations (0.01/0.2 M) result in solar energy conversion efficiency of 2% with VOC of 0.8 V. Since the potential difference between the TiO2 conduction band edge at pH 7 and the electrolyte redox potential is about 0.79 V, although the conduction band edge shifts negatively under the negative bias application into the TiO2 electrode, the solar cell with the optimized electrolyte composition has nearly reached the theoretical maximum voltage. This study suggests a promising method to optimize an electrolyte composition for maximizing solar energy conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700