Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes
详细信息    查看全文
文摘
Controlling the interface electronic band structure in heterostructures is essential for developing highly efficient photoelectrochemical (PEC) photoanodes. Here, we presented an enhanced oxygen evolution reaction (OER) by introducing the piezotronics concept, i.e., piezoelectric polarization (Ppz)-induced band engineering. In a Ni(OH)2-decorated ZnO photoanode system, appreciably improved photocurrent density of sulfite (SO32鈥?/sup>) and hydroxyl (OH鈥?/sup>) oxidation reactions were obtained by physically deflecting the photoanode. Both theoretical and experimental results suggested that the performance enhancement was a result of the piezoelectric Ppz-endowed enlargement of the built-in electric field at the ZnO/Ni(OH)2 interface, which could drive an additional amount of photoexcited charges from ZnO toward the interface for OER. This strategy demonstrates a new route for improving the performance of inexpensive catalysts-based solar-to-fuel production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700