Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries
详细信息    查看全文
文摘
Sandwich-like V2O5/graphene mesoporous composite has been synthesized by a facile solvothermal approach. The crystalline structure, morphology, and electrochemical performance of the as-prepared materials have been investigated in detail. The results demonstrate that the 30鈥?0 nm V2O5 particles are homogeneously anchored on conducting graphene sheets, which allow the V2O5 nanoparticles to be wired up to a current collector through the underlying conducting graphene layers. As an anode material for lithium ion batteries, the composite exhibits a high reversible capacity of 1006 mAh g鈥? at a current density of 0.5 A g鈥? after 300 cycles. It also exhibits excellent rate performance with a discharge capacity of 500 mAh g鈥? at the current density of 3.0 A g鈥?, which is superior to the performance of the vanadium-based materials reported previously. The electrochemical properties demonstrate that the sandwich-like V2O5/graphene mesoporous composite could be a promising candidate material for high-capacity anode in lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700