Predictive Method for the Change in Equilibrium Conditions of Gas Hydrates with Addition of Inhibitors and Electrolytes
详细信息    查看全文
文摘
Here we present a predictive method for the change in the three-phase (vapor鈥搇iquid鈥揾ydrate) equilibrium condition of gas hydrates upon the introduction of organic inhibitors and electrolytes. The Peng鈥揜obinson鈥揝tryjek鈥揤era (PRSV) equation of state, combined with the COSMO-SAC activity coefficient liquid model through the modified Huron鈥揤idal (MHV1) mixing rule, is used to describe the fluid phase, and the van der Waals and Platteeuw (vdW鈥揚) model is used to describe the hydrate crystalline phase. The temperature-dependent Langmuir absorption constants for the vdW鈥揚 model are determined by fitting to the equilibrium condition of pure gas hydrates. Once determined, the method contains no adjustable binary interaction parameters and can be used for prediction of the phase behaviors of gas hydrates with additives that do not enter the cages of the clathrate hydrates (e.g., most inhibitors and electrolytes). We examined the accuracy of this method using five pure gas hydrates, five organic inhibitors, and nine electrolytes, and over ranges of temperature (259.0鈥?03.6 K) and pressure (1.37 脳 105鈥?.08 脳 108 Pa). The average relative deviations in the predicted equilibrium temperatures are found to be 0.23% for pure gas hydrates, 0.72% with organic inhibitors, and 0.18% with electrolytes, respectively. We believe that this method is useful for many gas hydrate related engineering problems such as the screening of inhibitors for gas hydrates in flow assurance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700