Combined Influence of Substrate Stiffness and Surface Topography on the Antiadhesive Properties of Acr-sP(EO-stat-PO) Hydrogels
详细信息    查看全文
文摘
Biomaterials that prevent nonspecific protein adsorption and cell adhesion are of high relevance for diverse applications in tissue engineering and diagnostics. One of the most widely applied materials for this purpose is Poly(ethylene glycol) (PEG). We have investigated how micrometer line topography and substrate elasticity act upon the antiadhesive properties of PEG-based hydrogels. In our studies we apply bulk hydrogel cross-linked from star-shaped poly(ethylene oxide-stat-propylene oxide) macromonomers. Substrate surfaces were topographically patterned via replica molding. Additionally, the mechanical properties were altered by variations in the cross-linking density. Surface patterns with dimensions in the range of the cells' own size, namely 10 μm wide grooves, induced significant cell adhesion and spreading on the Acr-sP(EO-stat-PO) hydrogels. In contrast, there was only little adhesion to smaller and larger pattern sizes and no adhesion at all on the smooth substrates, regardless the rigidity of the gel. The effect of varied substrate stiffness on cell behavior was only manifest in combination with topography. Softer substrates with line patterns lead to significantly higher cell adhesion and spreading than stiff substrates. We conclude that the physical and mechanical surface characteristics can eliminate the nonadhesive properties of PEG-based hydrogels to a large extent. This has to be taken into account when designing surfaces for biomedical application such as scaffolds for tissue engineering which rely on the inertness of PEG.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700