In Vitro Cellular Uptake and Dimerization of Signal Transducer and Activator of Transcription-3 (STAT3) Identify the Photosensitizing and Imaging-Potential of Isomeric Photosensitizers Derived from Ch
详细信息    查看全文
文摘
Among the photosensitizers investigated, both ring-D and ring-B reduced chlorins containing the m-iodobenzyloxyethyl group at position-3 and a carboxylic acid functionality at position-172 showed the highest uptake by tumor cells and light-dependent photoreaction that correlated with maximal tumor-imaging [positron emission tomography (PET) and fluorescence] and long-term photodynamic therapy (PDT) efficacy in BALB/c mice bearing Colon26 tumors. However, among the ring-D reduced compounds, the isomer containing the 1鈥?m-iobenzyloxyethyl group at position-3 was more effective than the corresponding 8-(1鈥?i>-m-iodobenzyloxyethyl) derivative. All photosensitizers showed maximum uptake by tumor tissue 24 h after injection, and the tumors exposed with light at low fluence and fluence rates (128 J/cm2, 14 mW/cm2) produced significantly enhanced tumor eradication than those exposed at higher fluence and fluence rate (135 J/cm2, 75 mW/cm2). Interestingly, dose-dependent cellular uptake of the compounds and light-dependent STAT3 dimerization have emerged as sensitive rapid indicators for PDT efficacy in vitro and in vivo and could be used as in vitro/in vivo biomarkers for evaluating and optimizing the in vivo treatment parameters of the existing and new PDT candidates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700