Short-Chain Fatty Acid Production from Different Biological Phosphorus Removal Sludges: The Influences of PHA and Gram-Staining Bacteria
详细信息    查看全文
  • 作者:Dongbo Wang ; Yinguang Chen ; Xiong Zheng ; Xiang Li ; Leiyu Feng
  • 刊名:Environmental Science & Technology (ES&T)
  • 出版年:2013
  • 出版时间:March 19, 2013
  • 年:2013
  • 卷:47
  • 期:6
  • 页码:2688-2695
  • 全文大小:307K
  • 年卷期:v.47,no.6(March 19, 2013)
  • ISSN:1520-5851
文摘
Recently, the reuse of waste activated sludge to produce short-chain fatty acids (SCFA) has attracted much attention. However, the influences of sludge characteristics, especially polyhydroxyalkanoates (PHA) and Gram-staining bacteria, on SCFA production have seldom been investigated. It was found in this study that during sludge anaerobic fermentation not only the fermentation time but also the SCFA production were different between two sludges, which had different PHA contents and Gram-negative bacteria to Gram-positive bacteria (GNB/GPB) ratios and were generated respectively from the anaerobic/oxic (AO) and aerobic/extended-idle (AEI) biological phosphorus removal processes. The optimal fermentation time for the AEI and AO sludges was respectively 4 and 8 d, and the corresponding SCFA production was 304.6 and 231.0 mg COD/g VSS (volatile suspended solids) in the batch test and 143.4 and 103.9 mg COD/g VSS in the semicontinuous experiment. The mechanism investigation showed that the AEI sludge had greater PHA content and GNB/GPB ratio, and the increased PHA content accelerated cell lysis and soluble substrate hydrolysis while the increased GNB/GPB ratio benefited cell lysis. Denaturing gradient gel electrophoresis profiles revealed that the microbial community in the AEI sludge fermentation reactor was dominated by Clostridium sp., which was reported to be SCFA-producing microbes. Further enzyme analyses indicated that the activities of key hydrolytic and acids-forming enzymes in the AEI sludge fermentation reactor were higher than those in the AO one. Thus, less fermentation time was required, but higher SCFA was produced in the AEI sludge fermentation system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700