The Relative Contributions of Abiotic and Microbial Processes to the Transformation of Tetrachloroethylene and Trichloroethylene in Anaerobic Microcosms
详细信息    查看全文
文摘
Reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in well-defined microcosms prepared with aquifer materials from three locations. Electron donors and terminal electron acceptors were added to both stimulate microbial activity and generate reactive minerals via microbial iron and sulfate reduction. The relative importance of abiotic and microbial PCE and TCE reductive dechlorination was then assessed by analysis of reaction products and kinetics and, in some cases, by stable carbon isotope fractionation. The predominant PCE and TCE transformation pathway in most microcosms was microbial reductive dechlorination. Rates of abiotic transformation were similar in magnitude to those for microbial reductive dechlorination in only a few cases where the activity of dechlorinating bacteria was low. Comparison of geochemical conditions with abiotic product recoveries showed that the greatest extent of abiotic reductive dechlorination occurred under iron- and sulfate-reducing conditions. Under these two geochemical conditions, high concentrations of Fe(II) and S(−II) solid species were present, suggesting the involvement of Fe(II) and S(−II) minerals in abiotic reductive dechlorination. Both abiotic and microbial dechlorination of PCE and TCE took place under almost all microcosm conditions; the relative rates of the two processes under field conditions will depend on factors such as the abundance of dechlorinating bacteria, soil properties, and the mass loading of reactive minerals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700