De Novo MS/MS Sequencing of Native Human Antibodies
详细信息    查看全文
文摘
One direct route for the discovery of therapeutic human monoclonal antibodies (mAbs) involves the isolation of peripheral B cells from survivors/sero-positive individuals after exposure to an infectious reagent or disease etiology, followed by single-cell sequencing or hybridoma generation. Peripheral B cells, however, are not always easy to obtain and represent only a small percentage of the total B-cell population across all bodily tissues. Although it has been demonstrated that tandem mass spectrometry (MS/MS) techniques can interrogate the full polyclonal antibody (pAb) response to an antigen in vivo, all current approaches identify MS/MS spectra against databases derived from genetic sequencing of B cells from the same patient. In this proof-of-concept study, we demonstrate the feasibility of a novel MS/MS antibody discovery approach in which only serum antibodies are required without the need for sequencing of genetic material. Peripheral pAbs from a cytomegalovirus-exposed individual were purified by glycoprotein B antigen affinity and de novo sequenced from MS/MS data. Purely MS-derived mAbs were then manufactured in mammalian cells to validate potency via antigen-binding ELISA. Interestingly, we found that these mAbs accounted for 1 to 2% of total donor IgG but were not detected in parallel sequencing of memory B cells from the same patient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700