Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes
详细信息    查看全文
文摘
We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet–triplet energy difference (ΔE = 523 and 564 cm–1 for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the CuI ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700