Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4鈥揕a0.7Sr0.3MnO3 Nanocomposites
详细信息    查看全文
文摘
Magnetic refrigeration, resulting from the magnetocaloric effect of a material around the magnetic phase-transition temperature, is a topic of great interest as it is considered to be an alternate energy solution to conventional vapor-compression refrigeration. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting materials in various forms, from bulk to nanostrucutres. In this study, magnetocaloric properties of self-assembled Mn3O4鈥揕a0.7Sr0.3MnO3 nanocomposites, with varying doping concentrations of Mn3O4 in the form of nanocrystals embedded in the La0.7Sr0.3MnO3 matrix, are investigated. The temperatures corresponding to the paramagnetic-to-ferromagnetic transitions are higher, and the values of change in magnetic entropy under a magnetic field of 2 T show an enhancement (highest being 鈭?30%) for the nanocomposites with low doping concentrations of Mn3O4, compared to that of pure La0.7Sr0.3MnO3 thin films. Relative cooling power remain close to those of La0.7Sr0.3MnO3. The enhanced magnetic phase-transition temperature and magnetocaloric effect are interpreted and evidenced in the framework of interfacial coupling between Mn3O4 and La0.7Sr0.3MnO3. This work demonstrates the potentiality of self-assembled nanostructures for magnetic cooling near room temperature under low magnetic fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700