Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy
详细信息    查看全文
  • 作者:Geun Young Jin ; Yung Sam Kim
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2017
  • 出版时间:February 9, 2017
  • 年:2017
  • 卷:121
  • 期:5
  • 页码:1007-1011
  • 全文大小:463K
  • ISSN:1520-5215
文摘
2D IR echo spectroscopy, with high sensitivity and femtosecond time resolution, enables us to understand structure and ultrafast dynamics of molecular systems. Application of this experimental technique on weakly absorbing samples, however, had been limited by the precise and unambiguous phase determination of the echo signals. In this study, we propose a new experimental scheme that significantly increases the phase stability of the involved IR pulses. We have demonstrated that the incorporation of phase-resolved heterodyne-detected transient grating (PR-HDTG) spectroscopy greatly enhances the capabilities of 2D IR spectroscopy. The new experimental scheme has been used to obtain 2D IR spectra on weakly absorbing azide ions (N3) in H2O (absorbance ∼0.025), free of phase ambiguity even at large waiting times. We report the estimated spectral diffusion time scale (1.056 ps) of azide ions in aqueous solution from the 2D IR spectra and the vibrational lifetime (750 ± 3 fs) and the reorientation time (1108 ± 24 fs) from the PR-HDTG spectra.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700