Probing into Homopolymer Self-Assembly: How Does Hydrogen Bonding Influence Morphology?
详细信息    查看全文
  • 作者:Yunqing Zhu ; Lin Liu ; Jianzhong Du
  • 刊名:Macromolecules
  • 出版年:2013
  • 出版时间:January 8, 2013
  • 年:2013
  • 卷:46
  • 期:1
  • 页码:194-203
  • 全文大小:644K
  • 年卷期:v.46,no.1(January 8, 2013)
  • ISSN:1520-5835
文摘
Self-assembly of amphiphilic homopolymers composed of both hydrophilic and hydrophobic components in each repeating unit is burgeoning in recent years due to their facile synthesis compared to block copolymers. However, ordered homopolymer nanostructures are very limited, and solid TEM evidence for the formation of vesicles and other complex morphologies is necessary to address the mechanistic insights of homopolymer self-assembly. Presented in this article are the studies on the morphological transition, the structure analysis, and the formation mechanism of homopolymer self-assembly. First, a series of amphiphilic homopolymers, poly(2-hydroxy-3-phenoxypropyl acrylate) (PHPPA) with various molecular weights (MWs) have been designed and synthesized by the reversible addition鈥揻ragmentation chain transfer (RAFT) process. Second, upon simply changing the homopolymer鈥檚 chain length or cosolvents during self-assembly, a wide range of new homopolymer-based nanostructures can be obtained, such as large compound micelles (LCMs), simple vesicles, large compound vesicles (LCVs), and hydrated large compound micelles (HLCMs) as a result of different intensity of inter/intra-polymer hydrogen bonding in the homopolymer self-assemblies. Moreover, micrometer-sized branched cylinders are formed by premixing PHPPA36 and PHPPA103 homopolymers, which is not observed by self-assembly of PHPPA36 and PHPPA103 individually. Third, we claim that the structures of homopolymer self-assemblies are much different from their block copolymer analogues due to homopolymer鈥檚 fuzzy hydrophobic and hydrophilic domains compared to block copolymer鈥檚 distinct ones. We confirm that the structure of micelle core or vesicle membrane (alike to each other in nature) consists of both hydrophilic and hydrophobic moieties, which is different from block copolymer micelles or vesicles with hydrophobic cores or membranes. Also, a dye encapsulation experiment is employed to identify and distinguish a new nanostructure, HLCMs, from LCMs. Our study has provided a new perspective on homopolymer self-assembly.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700