Silver-Decorated Cylindrical Nanopores: Combining the Third Dimension with Chemical Enhancement for Efficient Trace Chemical Detection with SERS
详细信息    查看全文
文摘
We report on the facile fabrication of efficient porous alumina membrane-based SERS substrates that avoid the cumbersome stages of chemical surface modification of the pores and premixing/infiltration of nanoparticles with analytes. The design relies on higher light transmission through the SERS substrates by widening the cylindrical pore diameter to 355 nm and in situ growth of uniform silver nanoparticles on the inner walls. Electromagnetic simulations confirm that the interaction of excitation light with the nanoparticles along the pore walls can be maximized in such a membrane when the nanoparticles are placed within the first 14 渭m of the pore depth. For common benchmark Raman analytes such as benzenethiol and Rhodamine 6G, nanomolar detection limits are readily obtained without any additional chemical surface functionalization and/or additional premixing and preconcentration of metal nanoparticles and analytes. Moreover, a high enhancement of 106 and a micromolar detection limit are achieved for nonresonant, Raman-stealthy perchloric acid molecules. Quantum mechanical calculations of perchloric acid bound to nanostructured silver clusters with different sizes and binding sites suggest that the maximum chemical enhancement is achieved for molecules located at the tips of the (111) planes of silver lattices, which are abundantly available on the nanoparticles grown in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700