Configuration-Dependent Diffusion Dynamics of Downhill and Two-State Protein Folding
详细信息    查看全文
文摘
Configuration-dependent diffusion (CDD) is important for protein folding kinetics with small thermodynamic barriers. CDD can be even more crucial in downhill folding without thermodynamic barriers. We explored the CDD of a downhill protein (BBL), and a two-state protein (CI2). The hidden kinetic barriers due to CDD were revealed. The increased 1 kBT kinetic barrier is in line with experimental value based on other fast folding proteins. Compared to that of CI2, the effective free-energy profile of BBL is found to be significantly influenced by CDD, and the kinetics are totally determined by diffusion. These findings are consistent with both earlier bulk and single-molecule fluorescence measurements. In addition, we found the temperature dependence of CDD. We also found that the ratio of folding transition temperature against optimal kinetic folding temperature can provide both a quantitative measure for the underlying landscape topography and an indicator for the possible appearance of downhill folding. Our study can help for a better understanding of the role of diffusion in protein folding dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700