Panchromatic Solar-to-H2 Conversion by a Hybrid Quantum Dots–Dye Dual Absorber Tandem Device
详细信息    查看全文
文摘
Solution-processed mesoscopic oxide semiconductor-based materials offer potentially low-cost and high stability alternative for next generation of water to hydrogen conversion photoelectrochemical cells (PEC). In the present study, we demonstrate the effective unassisted H2 generation by a tandem device based on a quantum dot (QD)鈥揹ye dual absorber system. These systems are constituted by a TiO2 mesoscopic photoanode sensitized with CdS QDs and a dye sensitized solar cell (DSSC), based on ruthenium dye, connected in series. This solar cell supplies the needed photovoltage to induce photodriven hydrogen production. Opto-electrochemical characterization of the single components allows the prediction of the operational photocurrents and a reliable estimation of the theoretical power conversion efficiencies of tandem systems. Evolved hydrogen under simulated solar illumination was collected, and solar to hydrogen conversion efficiencies (STH) were obtained. The tandem devices have demonstrated high stability in aqueous medium and solar-to-hydrogen conversion efficiency of (0.78 卤 0.04)%, near tripling the efficiency of single QD based photoanodes. These results highlight the importance of the design of hybrid photoanodes combining the effect of different light absorbers working in parallel tandem devices for the development of efficient H2 generation QD-based photoelectrochemical cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700