Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO2 Core鈥揝hell Nanorods on Flat Alumina Substrates
详细信息    查看全文
文摘
Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core鈥搒hell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanoparticle-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 掳C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N鈥揘 heterojunction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700