Synthesis, Molecular Editing, and Biological Assessment of the Potent Cytotoxin Leiodermatolide
详细信息    查看全文
文摘
It was by way of total synthesis that the issues concerning the stereostructure of leiodermatolide (1) have recently been solved; with the target now being unambiguously defined, the mission of synthesis changes as to secure a meaningful supply of this exceedingly scarce natural product derived from a deep-sea sponge. To this end, a scalable route of 19 steps (longest linear sequence) has been developed, which features a catalytic asymmetric propargylation of a highly enolizable 尾-keto-lactone, a ring closing alkyne metathesis and a modified Stille coupling as the key transformations. Deliberate digression from this robust blueprint brought a first set of analogues into reach, which allowed the lead qualities of 1 to be assessed. The acquired biodata show that 1 is a potent cytotoxin in human tumor cell proliferation assays, distinguished by GI50 values in the 鈮? nM range even for cell lines expressing the Pgp efflux transporter. Studies with human U2OS cells revealed that 1 causes mitotic arrest, micronucleus induction, centrosome amplification and tubulin disruption, even though no evidence for direct tubulin binding has been found in cell-free assays; moreover, the compound does not seem to act through kinase inhibition. Indirect evidence points at centrosome declustering as a possible mechanism of action, which provides a potentially rewarding outlook in that centrosome declustering agents hold promise of being inherently selective for malignant over healthy human tissue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700