Manipulation of Collective Optical Activity in One-Dimensional Plasmonic Assembly
详细信息    查看全文
文摘
The manipulation of the chirality and corresponding optical activity in the visible鈥搉ear-infrared (NIR) light region is significant to realize applications in the fields of chemical sensing, enantioselective separation, chiral nanocatalysis, and optical devices. We studied the plasmon-induced circular dichroism (CD) response by one-dimensional (1D) assembly of cysteine (CYS) and gold nanorods (GNRs). Typically, GNRs can form end-to-end assembly through the electrostatic attraction of CYS molecules preferentially attached on the ends of different GNRs. CD responses are observed at both the UV and visible鈥揘IR light region in the 1D assembly, which are assigned to the CYS molecules and the GNRs, respectively. In addition, the wavelength of the CD responses can be manipulated from 550 nm to more than 900 nm through altering the aspect ratios of GNRs in 1D assembly. Anisotropic enhancement of optical activity is discovered, suggesting that the enhancement of the longitudinal localized surface plasmon resonance (LSPR) peak of GNRs in the CD response is much more apparent than that of the transverse LSPR. The CD responses of individual CYS-attached GNRs and CYS-assembled gold nanoparticles (GNPs) substantiate that the form of assembly and the shape of building blocks are significant not only for the intensity but for the line shape of the CD signals.

Keywords:

circular dichroism; gold nanorod; optical activity; self-assembly; surface plasmon coupling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700