Mn3O4@CoMn2O4–CoxOy Nanoparticles: Partial Cation Exchange Synthesis and Electrocatalytic Properties toward the Oxygen Reduction and Evolution Reactions
详细信息    查看全文
文摘
Mn3O4@CoMn2O4 nanoparticles (NPs) were produced at low temperature and ambient atmosphere using a one-pot two-step synthesis protocol involving the cation exchange of Mn by Co in preformed Mn3O4 NPs. Selecting the proper cobalt precursor, the nucleation of CoxOy crystallites at the Mn3O4@CoMn2O4 surface could be simultaneously promoted to form Mn3O4@CoMn2O4–CoxOy NPs. Such heterostructured NPs were investigated for oxygen reduction and evolution reactions (ORR, OER) in alkaline solution. Mn3O4@CoMn2O4–CoxOy NPs with [Co]/[Mn] = 1 showed low overpotentials of 0.31 V at −3 mA·cm–2 and a small Tafel slope of 52 mV·dec–1 for ORR, and overpotentials of 0.31 V at 10 mA·cm–2 and a Tafel slope of 81 mV·dec–1 for OER, thus outperforming commercial Pt-, IrO2-based and previously reported transition metal oxides. This cation-exchange-based synthesis protocol opens up a new approach to design novel heterostructured NPs as efficient nonprecious metal bifunctional oxygen catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700