Modeling the Effect of Dissolved Hydrogen Sulfide on Mg2+鈥揥ater Complex on Dolomite {104} Surfaces
详细信息    查看全文
文摘
The key kinetic barrier to dolomite formation is related to the surface Mg2+鈥揌2O complex, which hinders binding of surface Mg2+ ions to the CO32鈥?/sup> ions in solution. It has been proposed that this reaction can be catalyzed by dissolved hydrogen sulfide. To characterize the role of dissolved hydrogen sulfide in the dehydration of surface Mg2+ ions, ab initio simulations based on density functional theory (DFT) were carried out to study the thermodynamics of competitive adsorption of hydrogen sulfide and water on dolomite (104) surfaces from solution. We find that water is thermodynamically more stable on the surface with the difference in adsorption energy of 鈭?3.6 kJ/mol (in vacuum) and 鈭?2.8 kJ/mol (in aqueous solution). However, aqueous hydrogen sulfide adsorbed on the surface increases the Mg2+鈥揌2O distances on the surrounding surface sites. Two possible mechanisms were proposed for the catalytic effects of adsorbed hydrogen sulfide on the anhydrous Ca鈥揗g carbonate crystallization at low temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700