用户名: 密码: 验证码:
Syntheses and Structures of a Series of Uranyl Phosphonates and Sulfonates: An Insight into Their Correlations and Discrepancies
详细信息    查看全文
文摘
Six uranyl phosphonates and sulfonates have been hydrothermally synthesized, namely, (H2tib)[(UO2)3(PO3C6H5)4]路2H2O (UPhP-1), Zn(pi)2(UO2)(PO3C6H5)2 (UPhP-2), Zn(dib)(UO2)(PO3C6H5)2路2H2O (UPhP-3), (HTEA)[(UO2)(5-SP)] (USP-1), (Hdib)2[(UO2)2(OH)(O)(5-SP)] (USP-2), and Zn(phen)3(UO2)2(3-SP)2 (USP-3) (tib = 1,3,5-tri(1H-imidazol-1-yl)benzene, pi = 1-phenyl-1H-imidazole, dib = 1,4-di(1H-imidazol-1-yl)benzene, TEA = triethylamine, phen = 1,10-phenanthroline, 5-SP = 5-sulfoisophthalic acid, and 3-SP = 3-sulfoisophthalic acid). UPhP-1 has been determined to be a layered structure constructed by UO7 pentagonal bipyramids, UO6 octahedra, and phenylphosphonates. Protonated tib plays a role in balancing the negative charge and holding its structure together. UPhP-2 is made up of UO6 octahedra, ZnO2N2 tetrahedra and PO3C tetrahedra in phenylphosphonates, forming a 1D assembly, which is stabilized by chelate phen ligand. Further connection of such chainlike structure via dib yields a 2D layered architecture of UPhP-3. Although sulfonate group possesses similar tetrahedral structure as the phosphonate group, a unidentated coordination mode is only found in this work. UO7 pentagonal bipyramids are linked by 5-SP to form the layered assembly of USP-1. USP-2 also consists of the same sulfonate ligand, but features tetranulear uranyl clusters. Similarly, protonated TEA and dib molecules enable stabilization of their structures, respectively. Formed by dinuclear uranyl cluster and 3-SP ligand, USP-3 appears as a 1D arrangement, in which Zn(phen)3 acts as the counterion to compensate the negative charge. All of these compounds have been characterized by IR and photoluminescent spectroscopy. Their characteristic emissions have been attributed as transition properties of uranyl cations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700