Targeting Histidine Side Chains in Molecular Design through Nitrogen–Halogen Bonds
详细信息    查看全文
文摘
Halogen bonds are directional noncovalent interactions that can be used to target electron donors in a protein binding site. In this study, we employ quantum chemical calculations to explore halogen路路路nitrogen contacts involving histidine side chains. We characterize the energetics on the MP2 level of theory using SCS-MP2 and CCSD(T)/CBS as reference calculations and elucidate their energy profile in suboptimal geometries. We derive simple rules allowing medicinal chemists and chemical biologists to easily determine preferred areas of interaction in a binding site and exploit them for scaffold decoration and design. Our work shows that nitrogen鈥揾alogen bonds are valuable interactions that are this far underexploited in patent applications, lead structure, and clinical candidate selection. We highlight their potential to increase binding affinities and suggest that they can significantly contribute to inducing and tuning subtype selectivities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700