Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules
详细信息    查看全文
文摘
Self-doping of cations on the tetrahedral and octahedral sites in spinel oxides creates 鈥渁nti-site鈥?defects, which results in functional optical, electronic, magnetic, and other materials properties. Previously, we divded the III鈥揑I spinel family into four doping types (DTs) based on first-principle calculations in order to understand their electrical behavior. Here, we present experimental evidence on two prototype spinels for each major doping type (DT1 and DT4) that test the first principles calculations. For the DT-1 Ga2ZnO4 spinel, we show that the anti-site defects in a stoichiometric film are equal in concentration and compenstate each other, whereas, for nonstoichiometric Cr2MnO4, a representative DT-4 spinel, excess Mn on the tetrahedral sites becomes electrically inactive as the Mn species switch from (III) to (II). The agreement between experiment and theory validates the Doping Rules distilled from the theoretical framework and significantly enhances our understanding of the defect chemistry of spinel oxides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700