Modulating Bond Lengths via Backdonation: A First-Principles Investigation of a Quinonoid Zwitterion Adsorbed to Coinage Metal Surfaces
详细信息    查看全文
文摘
First-principles calculations reveal that upon adsorption to the Cu(111) surface, the C–C single bonds within the p-benzoquinonemonoimine zwitterion (ZI) contract by about 6%. A detailed analysis reveals that the bond shortening is primarily a result of backdonation from Cu orbitals of s and d symmetry to the lowest unoccupied orbital (LUMO) of the ZI. This LUMO is π*-antibonding across the molecule and π-bonding across the C–C bond that shortens. We illustrate that the level alignment between the Fermi level of the surface and the frontier molecular orbitals of the ZI, the topology of the LUMO, and the distance between the substrate and the adsorbate are important factors enabling bond strengthening via backdonation. An extended transition state–natural orbitals for chemical valence (ETS-NOCV) analysis is applied to molecular models for this system, and it confirms that the surface → LUMO backdonation on Cu(111) is larger than on Ag(111) and Au(111).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700