XPS, UV鈥揤is, FTIR, and EXAFS Studies to Investigate the Binding Mechanism of N719 Dye onto Oxalic Acid Treated TiO2 and Its Implication on Photovoltaic Properties
详细信息    查看全文
文摘
The anchoring mechanism of N719 dye molecules on oxalic acid treated TiO2 (OA-TiO2) electrodes has been investigated using extended X-ray absorption fine structure (EXAFS) measurements, Fourier transform infrared spectroscopy (FTIR), UV鈥搗is spectroscopy, and X-ray photoelectron spectroscopy (XPS). The FTIR spectroscopy of OA-TiO2 electrodes revealed that the oxalic acid dissociates at the TiO2 surface and binds through bidentate chelating and/or bidentate bridging. Analyses of EXAFS, FTIR, UV鈥搗is, and XPS measurements of N719 dye loaded onto OA-TiO2 revealed that the binding of N719 molecules takes place via interaction between the Ru atom of the dye and O鈥?/sup> of bidentate bridged oxalate ions at the TiO2 surface. This mechanism is quite different from the binding of N719 onto untreated TiO2 (WO-TiO2) surface, where 鈭扖OOH and SCN groups of the dye directly bind to the TiO2 surface. The analyses of UV鈥搗is data show that the amount of N719 dye loading onto OA-TiO2 surface is much higher than that onto the native TiO2 surface. In addition, the incident photon-to-current conversion efficiency (IPCE) measurements show that the presence of oxalate ions between the dye and TiO2 surface favors efficient electron transfer and therefore improvement in device efficiency. The dye-sensitized solar cells fabricated using N719 dye sensitized onto OA-TiO2 showed an efficiency of 4.6%, which is significantly higher than that based on a WO-TiO2 electrode (3.2%).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700