Rotating Fullerene Chains in Carbon Nanopeapods
详细信息    查看全文
文摘
The rotation of fullerene chains in SWNT peapods is studied using low-voltage high resolution transmission electron microscopy. Anisotropic fullerene chain structures (i.e., C300) are formed in situ in carbon nanopeapods via electron beam induced coalescence of individual fullerenes (i.e., C60). A low electron accelerating voltage of 80 kV is used to prevent damage to the SWNT. The large asymmetric C300 fullerene structure exhibits translational motion inside the SWNT and unique corkscrew like rotation motion. Another asymmetric fullerene chain containing mixed fullerene species is prepared by fusing smaller C60 fullerenes to a larger Sc@C82 fullerene, and this also exhibits corkscrew rotational motion. Chains of Sc3C2@C80 in SWNT peapods adopt a zigzag packing structure, and the entire zigzag chain rotates inside the SWNT to induce structural modifications to the SWNT diameter and cross-sectional shape of the SWNT. The expansion and contraction of the diameter of the SWNT is measured as 17%, demonstrating nanoactuation behavior in carbon nanopeapods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700