Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp2-on-sp3 Technology
详细信息    查看全文
文摘
Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional SiO2/Si substrates reveal the breakdown current density on the order of 1 渭A/nm2 (i.e., 108 A/cm2), which is 100脳 larger than the fundamental limit for the metals but still smaller than the maximum achieved in carbon nanotubes. We show that by replacing SiO2 with synthetic diamond, one can substantially increase the current-carrying capacity of graphene to as high as 18 渭A/nm2 even at ambient conditions. Our results indicate that graphene鈥檚 current-induced breakdown is thermally activated. We also found that the current carrying capacity of graphene can be improved not only on the single-crystal diamond substrates but also on an inexpensive ultrananocrystalline diamond, which can be produced in a process compatible with a conventional Si technology. The latter was attributed to the decreased thermal resistance of the ultrananocrystalline diamond layer at elevated temperatures. The obtained results are important for graphene鈥檚 applications in high-frequency transistors, interconnects, and transparent electrodes and can lead to the new planar sp2-on-sp3 carbon-on-carbon technology.

Keywords:

Graphene; graphene-on-diamond; breakdown current; UNCD; graphene transistors

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700