Cholesterol–Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations
详细信息    查看全文
文摘
Free volume voids in lipid bilayers can be measured by positron annihilation lifetime spectroscopy (PALS). This technique has been applied, together with differential scanning calorimetry and molecular dynamics (MD) simulations, to study the effects of cholesterol (Chol) and ceramide (Cer) on free volume voids in sphingomyelin (SM) or dipalmitoylphosphatidylcholine (DPPC) bilayers. Binary lipid samples with Chol were studied (DPPC:Chol 60:40, SM:Chol 60:40 mol ratio), and no phase transition was detected in the 20–60 °C range, in agreement with calorimetric data. Chol-driven liquid-ordered phase showed an intermediate free volume void size as compared to gel and fluid phases. For SM and SM:Cer (85:15 mol:mol) model membranes measured in the 20–60 °C range the gel-to-fluid phase transition could be observed with a related increase in free volume, which was more pronounced for the SM:Cer sample. MD simulations suggest a hitherto unsuspected lipid tilting in SM:Cer bilayers but not in pure SM. Ternary samples of DPPC:Cer:Chol (54:23:23) and SM:Cer:Chol (54:23:23) were measured, and a clear pattern of free volume increase was observed in the 20–60 °C because of the gel-to-fluid transition. Interestingly, MD simulations showed a tendency of Cer to change its distribution along the membrane to make room for Chol in ternary mixtures. The results suggest that the gel phase formed in these ternary mixtures is stabilized by Chol–Cer interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700