Magnetoplasmonics and Femtosecond Optomagnetism at the Nanoscale
详细信息    查看全文
文摘
The reciprocal interaction between spins and light has long been one of the main topics in fundamental studies of magnetism. Recent developments of nanolitography and other experimental approaches have disclosed that the interaction of light with magnetic nanostructures is qualitatively different from the regime in which the size of the illuminated media is much larger than the wavelength. In particular, the subwavelength regime of light–spin interaction revealed the plasmon-mediated enhancement and emergence of new magneto-optical phenomena. Novel possibilities of optical control of magnetism on the nanometer scale via plasmonic resonances have emerged as well. Moreover, it was shown that femtosecond laser pulses are able to generate magnons with nanometer wavelengths and with wavevectors near the edges of the Brillioun zone. The use of optical radiation to either excite ultrafast spin dynamics or detect the magnetic properties of structures at the nanoscale began a new chapter in the fascinating story of the human discovery of magnetism. This review aims at summarizing recent advances in magnetoplasmonics and optomagnetism at the nanoscale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700