Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block
详细信息    查看全文
文摘
We present here the periodic functionalization of a two-dimensional (2D) porous molecular network using a tailored molecular building block. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, 1-isoDBA, having an isophthalic acid unit connected by an azobenzene linker to a C12 alkyl chain and five C14 chains, was designed and synthesized. After the optimization of monolayer preparation conditions at the 1,2,4-trichlorobezene (TCB)/graphite interface, scanning tunneling microscopy (STM) observation of the self-assembled monolayer of 1-isoDBA revealed the formation of extended domains of a porous honeycomb-type molecular network, which consists of periodically located nanowells each functionalized by a cyclic hexamer of hydrogen-bonded isophthalic acid units and those without functional groups. This result demonstrates that the present strategy based on precise molecular design is a viable route to site-specific functionalization of surface-confined nanowells. The nanowells of different size can be used for guest coadsorption of different guests, coronene COR and hexakis[4-(phenylethynyl)phenylethynyl]benzene HPEPEB, whose size and shape match the respective nanowells. STM observation of a ternary mixture (1-isoDBA/COR/HPEPEB) at the TCB/graphite interface revealed the site-selective immobilization of the two different guest molecules at the respective nanowells, producing a highly ordered three-component 2D structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700