Blinking Statistics and Excitation-Dependent Luminescence Yield in Si and CdSe Nanocrystals
详细信息    查看全文
文摘
ON鈥揙FF intermittency or blinking is a phenomenon observed in single quantum emitters, which reduces their overall light emission. Even though it seems to be a fundamental property of quantum dots (QDs), substantial differences can be found in the blinking statistics of different nanocrystals. This work compares the blinking of numerous single, oxide-capped Si nanocrystals with that of CdSe/ZnS core鈥搒hell nanocrystals, measured under the same conditions in the same experimental system and over a broad range of excitation power densities. We find that ON- and OFF-times can be described by exponential statistics in Si QDs, as opposed to power-law statistics for the CdSe nanocrystals. The type of blinking (power-law or monoexponential) does not depend on excitation but seems to be an intrinsic property of the material system. Upon increasing excitation power, the duty cycle of Si quantum dots remains constant, whereas it decreases for CdSe nanocrystals, which is readily explained by blinking statistics. Both ON鈥揙FF and OFF鈥揙N transitions can be regarded as light-induced in Si/SiO2 QDs, while the OFF鈥揙N transition in CdSe/ZnS nanocrystals is not stimulated by photons. The differences in blinking behavior in these systems will be discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700